New 48 Volt Technology From Audi

Audi recently showcased the scope of the 48‑volt electrical system with the technology demonstrators Audi A6 TDI concept and RS 5 TDI concept. Both models are fitted with an electrically powered compressor that acts like a supercharger from practically zero rpm to eliminate turbocharger lag – boosting both performance and efficiency. It operates independently of the engine load and therefore fundamentally improves the acceleration performance. 48‑volt technology is also ideal for dynamic chassis control systems. Audi will shortly be unveiling a variety of applications in this field.

“We are using the full bandwidth of electrification in our drive principles strategy. Running part of the vehicle electrical system at 48 volts plays a central role in this,” said Prof. Dr. Ulrich Hackenberg, Member of the Board of Management for Technical Development at AUDI AG.

“It enables us to make more energy available. That paves the way for new technologies with which we can make our cars more sporty, more efficient and more convenient to use.”

In the current development version, a compact lithium‑ion battery supplies 48 volts as the energy source during engine‑off phases; a DC/DC converter integrates the 12‑volt electrical system. The lithium‑ion battery operates in conjunction with a new, efficiency-optimised alternator that qualifies the drivetrain as a mild hybrid. Within this concept there are diverse ways of starting, controlling and deactivating the combustion engine as needed. The powerful alternator achieves an energy recovery output of ten kilowatts, far more than is possible at present. That adds up to a saving of up to ten grams of CO2 per kilometre, equivalent to around 0.4 litres of fuel per 100 kilometres.

The current state-of-the-art technology has taken 12‑volt electrical systems to their very limits. Especially at low temperatures, all the various static‑load consumers can account for the entire power generated by the alternator, which can deliver up to 3 kW. The battery power is no longer capable of meeting the demands of new, dynamic‑load consumers such as high‑performance electric compressors.

The solution is a second subsidiary electrical system running at 48 volts, to complement the 12‑volt power supply. The higher voltage means smaller cable cross-sections are needed; this translates into lighter cable harnesses with lower power dissipation. The 48‑volt electrical system features new storage technologies and delivers much more power than the 12‑volt system with lead batteries. That makes it an important element of the Audi strategy of electrifying various stages of the drivetrain. The Group’s developers have already come up with a scalable platform concept, including a version that incorporates the electrically powered compressor.

New 48V Architectures Standard To Be Developed

A group of German car manufacturers had earlier agreed to develop a standard for 48V architectures to support efforts in raising fuel economy and lowering harmful emissions at the 2011 Automobil Elektronik Kongress in Ludwigsburg, Germany.
Changing circumstances since then have confirmed that 48V deployments will begin next year, as mentioned in the recent Strategy Analytics report, 48 Volt Architectures: Not A Question Of ‘If’, But Of ‘How’ and ‘When’.

New, more stringent mandates have been legislated or are being proposed, such as the new CAFE (Corporate Average Fuel Economy) level set in the United States at 54.5 mpg by 2025 and the European Union’s aim to lower carbon dioxide emissions to a level at 68-78 g/km by 2025. Furthermore, a new test procedure (WLTP (Worldwide-harmonised Light-vehicles Test Procedure) will soon replace existing less realistic and less stringent test cycles.

The growing threat of tougher mandate requirements, allied with recent developments aimed at making mild hybridised powertrains to be more cost effective and more desirable to consumers, have resulted in a widening of interest for 48V architectures – not just globally, but also extending to the high volume, compact model segments. More power can be recuperated when braking with a 48V mild hybrid powertrain than from an existing 12V stop-start system.

Kevin Mak, Senior Analyst in the Automotive Electronics Service (AES) at Strategy Analytics, said: “With Audi and BMW announcing their deployments of 48V architectures for next year, the concept has now become a reality. But the delays to its deployment, as well as continuing advancements in combustion engine technologies, have meant that 48V demand will still remain a long-term proposition.” Mak added: “Demand will reach 1.2 million units by 2020, but should other car manufacturers adopt 48 volts, demand could grow further to 2.7 million units.”

Volvo Cars in Cloud-based Communication to Make Driving Safer

Volvo Cars, the Swedish Transport Administration (Trafikverket) and the Norwegian Public Roads Administration (Statens Vegvesen) are joining forces in a pilot project in which road friction information from individual cars is shared within a cloud-based system.

The real-time data about slippery patches on the road are used to warn vehicles nearby, at the same time as it contributes to making winter road maintenance more efficient.

“The pilot is one of the first practical examples of the way communication between vehicles over the mobile network enables vehicles to ‘speak’ to each other and with the traffic environment. This can contribute to making traffic safer,” says Erik Israelsson, Project Leader Cooperative ITS (Intelligent Transport System) at Volvo Cars.

“We have 50 test cars on the roads, and next winter the fleet will grow considerably. Our aim is to make the technology available for our customers within a few years,” he adds.

Using The Mobile Network

When the Volvo test car detects an icy or slippery road patch, the information is transmitted to Volvo Cars’ database via the mobile phone network. An instant warning is transmitted to other vehicles that are approaching the slippery area, making it possible for the drivers to take immediate action to avoid a critical situation.

A slippery road warning on the instrument cluster alerts the driver. The application in the vehicle will be designed to adapt the driver warning to match the severity level based on the vehicle speed and the present road conditions.

Improved Winter Road Maintenance

The information about the icy patch is also sent to the road administrator as a complement to existing measurement stations along the road. The data can help the road administrator and their contracted entrepreneurs to better plan and execute winter road maintenance and quickly address changed conditions.

“When the road administrator has access to information from a large number of cars, the data can be used to make winter road maintenance more efficient. The information could help to improve road safety further for all road users. This could also reduce the use of salt when not needed and minimise the environmental impact,” says Israelsson.

Volvo Cars recognises that the maintained integrity of end-users is an important aspect of the system. The information shared with the road administrator will not include data of unique vehicles. The aggregated information is used solely to describe the present status of the road network.

Ambitious Connectivity Strategy

Volvo Cars strategically invests in and initiates partnerships to create cloud-based solutions, and the slippery road warning is the first safety feature in the Volvo cloud. The development of sophisticated communication via the mobile network is part of the company’s aim to offer customers a fully-connected experience.

“This is only the beginning. In the future we will have increased exchange of vital information between vehicles,” says Israelsson. “There is considerable potential in this area, including safer traffic, a more comfortable drive and an improved traffic flow.”

“The strategic focus on connectivity within our new Scalable Product Architecture paves the way for more cloud-based safety solutions. This will bring us closer to our safety vision that nobody should die or suffer serious injuries in a new Volvo car by the year 2020,” concludes Israelsson.

Volvo Tests Road Magnets For Accurate Positioning Of Self-Driving Cars

Volvo Car Group has completed a research project using magnets in the roadway to help the car determine its position. The research, which has been financed in strategic co-operation with the Swedish Transport Administration (Trafikverket), is a potential key to the implementation of self-driving vehicles. Reliable and highly accurate positioning is one of the crucial issues in the development of self-driving cars. While established positioning technologies such as GPS and cameras have limitations in certain conditions, road-integrated magnets remain unaffected by physical obstacles and poor weather conditions. â€œThe magnets create an invisible ‘railway’ that literally paves the way for a positioning inaccuracy of less than one decimetre. We have tested the technology at a variety of speeds and the results so far are promising,” says Jonas Ekmark, Preventive Safety Leader at Volvo Car Group. Volvo Cars plays a leading role in a large-scale autonomous driving pilot project in which 100 self-driving Volvo cars will use public roads in everyday driving conditions around the Swedish city of Gothenburg.

“Our aim is for the car to be able to handle the driving all by itself,” explains Ekmark. “Accurate, reliable positioning is a necessary prerequisite for a self-driving car. It is fully possible to implement autonomous vehicles without changes to the present infrastructure. However, this technology adds interesting possibilities, such as complementing road markings with magnets.”

In parallel with the potential in the field of autonomous driving, road-integrated magnets open up a number of other possibilities:

-Incorporating magnet-based positioning in preventive safety systems could help prevent run-off road accidents.
-Magnets could facilitate accuracy of winter road maintenance, which in turn could prevent damage to snow-covered objects, such as barriers and signs, near the road edge.

There is also a possibility of more efficient utilisation of road space since accurate positioning could allow lanes to be narrower.

Volvo Cars’ research team created a 100-metre long test track at the company’s testing facilities in Hällered in Gothenburg, Sweden. A pattern of round ferrite magnets (40x15mm) was located 200mm below the road surface. The car was equipped with several magnetic field sensors. The research programme was designed to evaluate crucial issues, such as detection range, reliability, durability, cost and the impact on road maintenance. â€œOur experience so far is that ferrite magnets are an efficient, reliable and relatively cheap solution, both when it comes to the infrastructure and on-board sensor technology. The next step is to conduct tests in real-life traffic,” explains Jonas Ekmark.

Claes Tingvall, Traffic Safety Director at the Swedish Transport Administration, agrees: “The test results are very interesting, especially when adding the potential for improved safety as well the advantages for the development of self-driving vehicles. A large-scale implementation of road magnets could very well be part of Sweden’s aim to pioneer technology that contributes to sustainable mobility,” says Claes Tingvall.

Aussie Technology In USA Smart Transport

Intelligent Transport Systems Australia (ITS Australia) commended the United States Government announcement that it will begin taking steps to enable vehicle-to-vehicle (V2V) communication technology for light vehicles.

ITS Australia Chief Executive Officer Susan Harris said the announcement by the US Department of Transportation (DOT) and the National Highway Traffic Safety Administration (NHTSA) is pivotal in taking road safety to the next level.

“Passive safety products, such as seat belts and air bags that protect people in a crash, have greatly reduced road trauma,” said Susan Harris. “V2V technology is the next major step forward. This active safety system enables real time communication between vehicles to help avoid collisions in the first place.”

US DOT Secretary Anthony Foxx said V2V technology has the potential to avoid 70 to 80 percent of crashes that involve unimpaired drivers. The DOT approval follows almost a decade of testing and a rigorous Safety Pilot Model Deployment study begun in 2012 in Michigan involving almost 3,000 cars, buses, trucks and motorcycles equipped with 5.9 GHz dedicated short-range communications (DSRC) radios.

This technology improves safety by allowing vehicles to “talk” to each other and exchange basic safety data, such as speed, position and projected path, ten times per second. The DOT announcement includes “multiple layers of security and privacy protection.”

The NHTSA is now finalising the analysis of the data from this study. NHTSA will then begin working on a regulatory proposal that would require V2V devices in new vehicles in a future year, consistent with applicable legal requirements, Executive Orders, and guidance. DOT believes that the signal this announcement sends to the market will significantly enhance development of this technology and pave the way for market penetration of V2V safety applications.

Australian ITS leadership

Adelaide company Cohda Wireless is a key provider of the Cooperative Intelligent Transport Systems (C-ITS) V2V wireless devices used in the USA Safety Pilot Model Deployment study. The radios warn drivers about specific hazards, such as an impending collision at a blind intersection, during a lane change, while passing another vehicle on a two lane road, or a vehicle stopped ahead. The Michigan project is also testing vehicle-to-infrastructure (V2I) communication systems.

“Australia’s innovative ITS industry is at the forefront of the V2V technology proven in this Safety Pilot Model Deployment study. We are also international leaders in other intelligent transport systems technologies,” said Susan Harris.

Intelligent Transport Cooperative Research Centre

To capitalise on and grow the advanced capabilities of the local ITS industry, ITS Australia is working with the local ITS industry, led by the University of South Australia, to establish an Intelligent Transport Cooperative Research Centre (CRC) to drive further research.

The charter for the Intelligent Transport CRC will be to deliver major benefits to Australia in terms of safety, sustainability, productivity and industry development. Among the key themes for research are:

* Transport systems and infrastructure across different modes (including rail, public and private road vehicles).

* Intelligent Connected Vehicles.

* Transition and implementation towards a smart, connected transport network.

Safety and efficiency gains from smart transport systems are immense. In addition, the CRC will seek to ensure efficient pathways as, for example, the reliance on physical roadside signs reduces in preference to advice directly communicated to the driver in the vehicle.

The CRC will also consider important legacy systems taking account of the needs of all road users, including groups such as pedestrians and cyclists.

Susan Harris said a CRC will ensure that Australia continues to be a leader in the competitive high technology international transport market. “The fact that we have the skills and drive for innovation is proven by the fact that creative Australian businesses are producing world’s best practice ITS solutions – and are achieving significant exports,” she said.

“In addition, safety will also greatly benefit from CRC research work. While it continues to reduce thanks to improved passive safety equipment and active innovations such as electronic stability control, the road death toll in Australia in 2013 was 1,193 down from 1,298 the year previously.

“This tragedy costs the nation an estimated $27 billion a year and causes incalculable personal grief and trauma. Cooperative Intelligent Transport Systems that communicate with each other, such as Vehicle–to-Vehicle and Vehicle-to-Infrastructure, will take safety intervention from helping people to survive crashes to the next level of avoiding crashes.

“A well funded CRC will also facilitate a smooth transition and implementation pathway for Australia to move forward with its national program to implement intelligent transport systems. In addition to safety, the pay back to the community and businesses will be improved environmental and productivity performance, as well as wide ranging industry development opportunities.

“The DOT Secretary Foxx said ‘The potential of this technology is absolutely enormous’ and gave the green light for the use of V2V devices in future vehicles. Australia must keep pace with this important international development.

“A CRC focused on smart transport will deliver significant benefits to the industry, the national economy and the community at large. There are compelling reasons why the Intelligent Transport CRC must become a reality and there is strong support for it across Australia’s transport industry and from transport users,” said Susan Harris.

To learn more about the Intelligent Transport CRC, visit .

Vehicle to vehicle communication improves safety by allowing vehicles to “talk” to each other and exchange basic data, such as speed, position and projected path, ten times per second.


Cohda Wireless Intersection Communication Technology

An active safety system, vehicle to vehicle technology enables real time communication between vehicles to warn drivers about specific hazards, such as an impending collision at a blind intersection.

Steel Makers Add Lighter Alternatives

Steel will remain the dominant raw material in car production despite tougher competition from rivals, experts say.

Steel makers are offering lighter, more durable products to maintain their dominance against aluminium and plastics producers as the preferred raw material used in vehicle production. Right now steel and iron account for an estimated 71 percent of the material used in a car. By comparison, aluminum accounts for 9 percent and plastics, including carbon fiber, for 8 percent, according to estimates from Frost & Sullivan.

However, steel makers are facing tougher competition from aluminum and plastics makers, which are both poised to increase their shares by 2020 (see chart below). The use of aluminium is forecast to grow to 11 percent in 2020, according to Frost & Sullivan, while steel and iron use is foreseen falling to 65 percent by 2020. Aluminum is being used more often because it is up to 30 percent lighter than steel, IHS Global analyst Julia Mihalkina said.

Changing mix
Forecast materials mix in cars 2013-2015 vs. 2018-2020
Steel/iron71% 65%
Aluminium9% 11%
Plastics8% 9%
Other12% 15%

All material makers are seeking ways to help automakers reduce overall vehicle weight because lighter cars burn less fuel and produce fewer emissions. Carmakers are under pressure to cut fleet CO2 emissions in Europe to 130 grams per kilometer by 2015 from 132.4g/km in 2012. A tougher goal of 95g/km by 2020 is being debated in Brussels.

While steel’s share in cars will decline, Mihalkina expects that it will remain the predominant material in car production, with advanced steel continuing to take an increasing share of that market. One reason for this is because steel beats aluminum on price (see chart below). “In cases where weight becomes less important, the high cost of alternative materials, such as aluminum or composites, makes steel the first-choice material for car production,” Mihalkina said. “High availability will also keep steel prices increasing slowly and steadily, rather than fast and sharp.”

ArcelorMittal, the world’s largest steel maker, is reacting to the demand to reduce weight without sacrificing on safety by launching new products. The supplier expects automakers to start using its lightweight steels in their vehicles’ doors as early as next year because the company says its solution can deliver a 27 percent weight and cost savings.

Thinner steel

ArcelorMittal head of global r&d Greg Ludkovsky said that major carmakers from Europe, North America and Asia have expressed an interest in the company’s door solution, which combines existing high-strength steels and ultra high-strength steels to reduce the weight of the baseline compact car’s door from 18.3kg (about 40 pounds) to 13.3kg.

Big differences
Approximate 2012 prices in $ per metric ton for key raw materials
Magnesium 3,400
Carbon fibre 11,000

Part of the weight savings is achieved by using thinner steel for the outer door panel, Ludkovsky said. “You may pay more per pound, but the amount of the material you need is significantly less,” Ludkovsky told Automotive News Europe. He declined to say how much more expensive the material is compared with traditional steel or quantify how much less material would be needed to achieve the same level of crash protection.

Suppliers are increasingly asked to deliver lighter-weight, higher-strength steel than they have in the past, without compromising robustness and crash performance. Mihalkina said more than half of the steel used in automotive bodies includes some form of advanced high-strength steel.

Examples of cars with low-weight, high-performance steel include the Mercedes-Benz S class and Peugeot’s new 208, 2008 and 308. The use of lightweight, high-strength steel as well as aluminium and plastic composites helped reduce the weight of the new 308 by 140kg compared with the model it replaced, Laurent Declerck, project director for the new Peugeot 308, told Automotive News Europe. The lighter car emits a low of 85g/km of CO2 compared with 95g/km for the old model.

“We are really paying attention to details when trying to reduce car weight,” Declerck said, “and the use of high-performance steel is one way that we are doing that.”

Toyota Invests One Million Dollars An Hour On R&D

Toyota is spending one million dollars an hour on R&D including forward-looking, leading-edge technologies and product development in activities associated with the environment, energy and safety.

The latest annual report from Toyota Motor Corporation (TMC) confirms it invested 807.4 billion yen ($8.85 billion) on research and development in its financial year ended March 30, 2013.

This translates into more than $24 million per day or a little over one million dollars an hour – an increase of 3.5 per cent over the previous fiscal year.

The annual report says the overriding goal of Toyota’s technology and product development activities is to maximise driving pleasure, comfort and convenience while minimising traffic accidents and environmental impact.

“By achieving these sometimes conflicting goals to a high degree, we want to open the door to the automobile society of the future,” it says.

Toyota Australia executive director sales and marketing Tony Cramb said fostering innovation and ingenuity in the interests of customers has always been a cornerstone of Toyota’s success.

Cramb said Toyota’s R&D activities are dedicated to the development of stylish, affordable and high-quality vehicles – whether by refining existing systems or making leaps in new technology.

“This massive R&D commitment demonstrates that everyone at Toyota is driven to listen to our customers and to develop new ways to improve their experience,” Mr Cramb said.

“Such passion is evident in the work of our innovative designers and engineers and, ultimately, in the vehicles and services we deliver,” he said.

“Toyota is never going to stop trying to make ever-better vehicles for customers in Australia and around the world.”

Cramb said Toyota leads the way in anticipating and engineering the cars of tomorrow for today.

Last year, in the United States alone, Toyota companies were issued with 1,491 patents – more than any other automotive company.

During the development of the current-generation Prius, Toyota filed 1,261 patent applications worldwide.

TMC’s report says it is essential to continue making substantial R&D investments to preserve its competitive edge in technologies and vehicles.

Already the world’s leading producer of hybrid vehicles with 5.5 million sales globally, Toyota has stepped up its R&D and production capacity of nickel-metal hydride and lithium-ion batteries.

It has also ramped up development on new battery technologies like solid state and lithium air, as well as devoting resources to chemistries beyond lithium, such as magnesium and other low-valence materials.

Work is also progressing on Toyota’s first commercially available hydrogen fuel-cell vehicle with a new mid-size four-door sedan concept to be unveiled at the Tokyo Motor Show in November.

The hydrogen fuel cell will use core hybrid technology and will be a primary element of Toyota’s future mobility strategy.

New Technology From Ford

Ford is accelerating its product and technology led transformation with a completely refreshed line-up and several all-new models in showrooms between now and 2017.

In an unprecedented acceleration of new vehicle launches, Ford will refresh its entire vehicle line-up in Australia by 2017, offering 11 global vehicles to serve Australian customers for years to come with a full family of passenger cars, SUVs and commercial vehicles with exceptional quality, smart design, safety, fuel efficiency and value.

Ford Motor Company President and Chief Executive Officer, Alan Mulally, is in Sydney to reaffirm Ford’s long-term vision for Australia.

“We are introducing more great vehicles to Australian customers more quickly – with more innovation, more first-to-market safety advancements and more features customers really want and value,” Mulally said. “We also are committed to Australia as one of our product development centres of excellence, with talented designers and engineers creating vehicles and technologies here in Australia for the world.”

Ford’s vision of the future is being brought to life in a major event held at Fox Studios in Sydney and includes Ford Motor Company Chief Operating Officer, Mark Fields, Executive Vice President of Global Marketing, Sales and Service and Lincoln, Jim Farley and Group Vice President and President of Asia Pacific, David Schoch and Ford Australia President and CEO, Bob Graziano.

Fields gave Australia, and the world, the first look at a rugged, seven-seater design concept called the Ford Everest Concept, which was created by the Ford design and product development team in Australia, enhancing Ford’s already strong SUV line-up, which includes the Ford Kuga and Ford Territory and soon the new Ford EcoSport.

“This is our vision for a large, seven-seat off-road SUV to allow our customers to take on the world and it was created by our world-class design team here in Australia,” Fields said.

“We believe our customers will love the distinctive design, which clearly showcases the Ford Everest Concept’s exceptional off-road capability and toughness.”
Fields said the Ford Everest Concept was unmistakably a new member of the Ford family.

Featuring an inverted trapezoid grille, set high on the front of the car, the Ford Everest Concept’s contemporary look deliberately conveys ruggedness, combined with modern proportions, dynamic window graphics and a sculptured profile.

The SUV’s distinctive design and high ground clearance is not only purposeful but true to Ford’s fun-to-drive DNA.

World-Class Technologies
Ford’s family-friendly MyKey technology will be introduced on the new Ford Fiesta ST in September, and Ford’s rear inflatable seatbelts will be introduced in the 2014 Ford Mondeo.

These will be complemented by the influx of other new technologies, including EcoBoost engines, SYNCâ„¢ in-car connectivity and AppLink.

SYNC AppLink™-enabled Ford vehicles will be available in select Ford models in Australia in 2014, allowing customers to enjoy an enhanced driving experience. The first three apps available for Ford AppLink™ in Asia Pacific – and Australia – by Pandora, Kaliki and TuneIn Radio, mark new ways for customers to bring their favourite smartphone apps into their vehicles via simple voice commands.

Mitsubishi Outlander – Forward Collision Mitigation system, awarded by Euro NCAP

Mitsubishi Motors Corporation’s Forward Collision Mitigation system* (FCM) – fitted to the New Generation Outlander – is the latest advanced safety system acknowledged by Euro NCAP through its “Advanced Rewards”.

Safety benefit

Whether avoidance, crash or post-crash, advanced technologies define today’s frontier in the development of safer car and since 2010, Euro NCAP Advanced have rewarded and recognised car manufacturers which made available new safety technologies demonstrating a scientifically proven safety benefit for consumers and society.

For each technology nominated by a car manufacturer, Euro NCAP assigns a panel of objective experts who review evidence provided by the said manufacturer. Through logical and rigorous analysis of the way in which the technology has been developed, tested and validated, and from any real-world experience that may exist, the system’s performance and its expected effectiveness can be determined. Where a strong case is made, Euro NCAP will reward the technology, such as today with Mitsubishi Motors’ FCM.

5-star Outlander

A further testimony of Mitsubishi’s contribution to a safer driving environment, the FCM system (see below description) was first introduced in 2012 with the 5-star Euro NCAP awarded Outlander, together with other advanced safety features such as Adaptive Cruise Control* (ACC) system and Lane Departure Warning* (LDW) system – to be later deployed on future models as well.

As Euro NCAP stated: “Mitsubishi Motors’ Forward Collision Mitigation system rewarded by Euro NCAP is an example that some car manufacturers are making efforts to help us further reduce accidents and casualties on the roads by providing consumers with Autonomous Emergency Braking systems.”

Together with ACC and LDW, the Euro NCAP-awarded FCM system complements Mitsubishi’s continuous development of its various safety-related initiatives and innovations, whether for its proprietary RISE (Reinforced Impact Safety Evolution).structure**, the fine-tuning of active safety-related areas or the regular introduction of new passive safety features.

*Availability may vary according to market and model

* *Mitsubishi Motors’ RISE is a uni-body design that brings dramatic  advances in multi-directional impact safety performance. In essence, RISE is meant to disperse energy loads during side and rear crashes and controls distortion, enhancing occupant protection and also helping to protect the fuel system during a rear impact


Forward Collision Mitigation system* (FCM)

The FCM system – using the same 77 GHz radar used by the Adaptive Cruise Control system – detects obstacles on the road in front of the Outlander and will automatically apply the brakes when necessary to help prevent a collision or to help reduce the severity of a collision.

When the possibility of a front collision arises, the driver is warned through a buzzer and a light in the instrument panel.  The FCM will also increase the brake pressure in the circuit.

If the driver then hits the brakes, the Brake Assist function will activate earlier than normal.

When the risk of a collision becomes highly possible, a two-stage Automatic Braking function is engaged:

  • First stage: low braking pressure is automatically applied prompting the driver to avoid the collision.
  • Second stage: high braking pressure is automatically applied to help mitigate or avoid the collision.

FCM can help avoiding a collision when the car is driving at less than 30km/h and the system detects a stationary object.  With respect to other moving vehicles, FCM can also help to avoid a collision when the speed difference between the vehicle being detected and the Outlander is less than 30 km/h.  Where the speed difference is greater than 30 km/h, FCM cannot help prevent a collision, but can help to reduce the severity of that collision.

* The FCM system cannot cover all driving and traffic situations, all types of objects, or all weather and road conditions.

*The FCM system cannot detect all vehicles.  FCM works best detecting passenger size or larger vehicles.

Malibu Reaches The Peak At ANCAP

Independent vehicle safety advocate, ANCAP, has released ANCAP safety ratings for two new market entrants – the Holden Malibu and Fiat Freemont.

The Holden Malibu scored the top safety rating as recommended by ANCAP – a 5 star rating; while the Fiat Freemont achieved only a 4 star ANCAP safety rating.

“ANCAP urges consumers to accept nothing less than 5 stars when buying a new car,” said ANCAP Chief Executive Officer, Nicholas Clarke.

“Models like the Freemont are purpose-built to carry up to seven occupants – in particular families. It is therefore concerning that this model did not score sufficient points to achieve a 5 star ANCAP safety rating.”

In addition to falling short in the area of occupant protection, the Fiat Freemont also puts Australian pedestrians at greater risk of injury if struck, with the Australian-sold Freemont lacking an ‘active’ bonnet – a feature which is afforded to the European market as standard.

Clarke said it is wrong to have features such as this removed from vehicles depending on the country in which they are sold.

“We need to see the same maximum level of vehicle safety technologies offered in all countries. We’re all equal, we should save lives equally – here, in Europe, in America, in Asia – right across the world,” he said.

The 5 star Holden Malibu, which is already on sale in the United States, China and Europe, offers comparable levels of safety across each of these markets.

“There’s no reason why all manufacturers can’t build and sell the same vehicles to all,” said Clarke.

The Malibu performed well across all tests providing good levels of protection to the majority of body regions for both the driver and passenger.

ANCAP is supported by all Australian and New Zealand motoring clubs, the Australian Government, the New Zealand Government, Australian state and territory governments, the Victorian Transport Accident Commission, NRMA Insurance and the FIA Foundation.

To search individual crash test results for over 435 vehicles, learn more about safety technologies, explore interactive features, watch videos and to download images and media releases visit Crash test images and video can be downloaded from